1 **Eigenvectors and eigenvalues**

Eigenvectors of a matrix A represent directions x in which the action of the matrix by multiplication does not change the direction of x, but perhaps only the magnitude by a factor λ .

Definition 1. Let A be a square matrix of order n. A complex number λ is said to be **eigenvalue** for the matrix A if there exist a non-zero vector $x \in \mathbb{C}^n$ such that

$$Ax = \lambda x.$$

The vector x is called an **eigenvector** for A.

Example 2. Consider $A = \begin{pmatrix} 3 & 0 \\ 8 & -1 \end{pmatrix}$ and $x = \begin{bmatrix} 1 \\ 2 \end{bmatrix}$ and $\lambda = 3$. The multiplication Ax gives:

$$Ax = \begin{pmatrix} 3 & 0 \\ 8 & -1 \end{pmatrix} \begin{bmatrix} 1 \\ 2 \end{bmatrix} = \begin{bmatrix} 3 \\ 6 \end{bmatrix} = 3 \begin{bmatrix} 1 \\ 2 \end{bmatrix} = \lambda x.$$

Hence $\lambda = 3$ is an eigenvalue of A and the vector x is an eigenvector.

Theorem 3. If A is a square matrix of order n, then λ is an eigenvalue of A if and only if it satisfies the equation

$$\det(A - \lambda I_n) = 0.$$

This is called the characteristic equation of A and $p_A = det(A - \lambda I_n)$, the **charac**teristic polynomial of A.

Example 4. For the matrix $A = \begin{pmatrix} 3 & 0 \\ 8 & -1 \end{pmatrix}$, the characteristic equation is given by

$$A - \lambda I_2 = \begin{vmatrix} 3 - \lambda & 0 \\ 8 & -1 - \lambda \end{vmatrix} = (\lambda - 3)(\lambda + 1) = 0,$$

and the eigenvalues of A are $\lambda_1 = 3$ and $\lambda_2 = -1$.

Example 5. For the matrix $A = \begin{pmatrix} 5 & -6 & -6 \\ -1 & 4 & 2 \\ 3 & -6 & -4 \end{pmatrix}$, the characteristic equation is

given by

$$A - \lambda I_3 = \begin{vmatrix} 5 - \lambda & -6 & -6 \\ -1 & 4 - \lambda & 2 \\ 3 & -6 & -4 - \lambda \end{vmatrix} = -\lambda^3 + 5\lambda^2 - 8\lambda + 4 = (\lambda - 2)^2(\lambda - 1) = 0,$$

and the eigenvalues of A are $\lambda_1 = 1$ and $\lambda_2 = 2$. For $\lambda_1 = 1$, the eigenvectors are $x = t \begin{pmatrix} 3 \\ -1 \\ 3 \end{pmatrix}$, where $t \neq 0$. For $\lambda_1 = 2$, the eigenvectors are solutions to the system:

$$\begin{cases} 3x_1 - 6x_2 - 6x_3 = 0 \\ -x_1 + 2x_2 + 2x_3 = 0 \\ 3x_1 - 6x_2 - 6x_3 = 0 \end{cases}$$

The solutions we get are $x = t \begin{pmatrix} 2s + 2t \\ s \\ r \end{pmatrix} = s \begin{pmatrix} 2 \\ 1 \\ 0 \end{pmatrix} + t \begin{pmatrix} 2 \\ 0 \\ 1 \end{pmatrix}$, where t, s can be any

real numbers with the only condition that they cannot be both zero.

Example 6. The 90 degree rotation has matrix $Q = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}$. After a rotation, no real vector Qx stays in the same direction as x, as long as $x \neq 0$. The eigenvalues of Q are the complex numbers $\lambda_1 = i$ and $\lambda_2 = -i$. The corresponding eigenvectors are given by:

$$\begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} 1 \\ i \end{pmatrix} = -i \begin{pmatrix} 1 \\ i \end{pmatrix} \qquad \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} i \\ 1 \end{pmatrix} = i \begin{pmatrix} i \\ 1 \end{pmatrix}.$$

In general a rotation by an angle θ has matrix $Q = \begin{pmatrix} \cos(\theta) & -\sin(\theta) \\ \sin(\theta) & \cos(\theta) \end{pmatrix}$ without real eigenvalues.

Proposition 7. (The 2 × 2 case) Consider the matrix $A = \begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix}$. The eigenvalues of A are the roots of the equation:

$$\lambda^2 - \operatorname{tr}(A)\lambda + \det(A) = 0$$

and therefore, in case both eigenvalues are real, we have the three possibilities:

- (A) Both eigenvalues are positive \Leftrightarrow |A| > 0 and $\operatorname{tr}(A) > 0$.
- (B) Both eigenvalues are negative $\Leftrightarrow |A| > 0 \quad and \quad tr(A) < 0.$

(C) The two eigenvalues have different sign \Leftrightarrow |A| < 0.

Theorem 8. Let A be a square matrix of order n with characteristic polynomial

$$p(\lambda) = (-1)^n \lambda^n + (-1)^{n-1} b_{n-1} \lambda^{n-1} + \dots + (-1)^1 b_1 \lambda + b_0.$$

The coefficient b_k is given by the sum of all principal minors of A of order n-k. In particular:

(a) $b_0 = |A| = \det(A) = \lambda_1 \lambda_2 \dots \lambda_n$. (b) $b_{n-1} = \operatorname{tr}(A) = \lambda_1 + \lambda_2 + \dots + \lambda_n$. **Theorem 9.** (Cayley-Hamilton) Any square matrix A satisfies its own characteristic polynomial. This means:

$$p_A(A) = (-A)^n + b_{n-1}(-A)^{n-1} + \dots + b_1(-A) + b_0 = 0.$$

In particular for n = 2, we get the identity:

$$A^2 = \operatorname{tr}(A)A - |A|.$$

Practice Questions:

1. Find the eigenvalues and eigenvectors of $A = \begin{pmatrix} 2 & 2 \\ 5 & -1 \end{pmatrix}$.